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c uniform flow value
est estimated value
i,j,k panel index
m meridional coordinate direction
n,t normal, tangent to surface
onset uniform flow value
p point in flowfield
t total/stagnation flow condition
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(1) tangential coordinate direction
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ABS I HAcT
A method has been developed to calculate flows in multi-

stag( turbomachinery. The method is an extension of quasi-
thiec-dimensional blade-to-blade solution methods. Governing
equations for steady compressible inviscid flow are linearized
by introducing approximations. The linearized flow equations
are solved using integral equation techniques. The flows
through both stationary and rotating blade rows are determined
in a , .ingle calculation. Multiple bodies can be modeled for
each blade row, so that arbitrary blade counts can be analyzed.
The method's benefits are its speed and versatility.

NOMENCLATURE
Bs,Bd,Bv integral method influence coefficients
b stream sheet thickness
Cp pressure coefficient, (Pt_ P)/(p(rS2)2/2)
m meridional coordinate
npt number of panels
P pressure
r surface of revolution radius
S t blade-to-blade surface
S surface distance
T temperature
U transformed wheel speed, r2PbQ
V absolute flow velocity

Vpb estimated nonlinear  term
v absolute disturbance velocity
W relative flow velocity
x,y transformed coordinates
a absolute flow angle with respect to meridional

direction
y,6,cr integral method sigularity strengths
0 surface angle

P fluid density
tangential coordinate

INTRODUCTION
Available tools for multistage turbomachinery design are

limited. Axisymmetric throughflow calculations are the main
design tool used for developing a multistage machine's flow
path. These calculations predict the flow on a hub-to-shroud
surface through the vane and blade rows. To estimate the flow
on blade-to-blade surfaces, results from the throughflow calcu-
lation are used as input for another calculation. The additional
calculation predicts the flow on a surface of revolution that is
normal to the hub-to-shroud surface.

Many blade-to-blade solutions must be run for a multistage
design. Solutions are run for several streamlines given by the
hub-to-shroud calculations. Most blade-to-blade solutions are
limited to calculating a single blade row's flowfield. Solutions
are required for each blade row in the machine.

The combination of hub-to-shroud and blade-to-blade flow
calculations has provided the basis of most designs in the past.
More recently multiblade row Navier-Stokes calculations have
become available to the turbomachinery designer. Rai (1987a),
Jorgenson and Chima (1989), and Lewis et al. (1989) have dis-
played blade-to-blade stage calculations. Rai (1987b),
Adamczyk et al. (1990), and Chen (1991) have reported on
three-dimensional stage calculations.



These newer methods require significant computational
resources. They typically have run tunes measured in hours on
the fastest computers. These long nun times limit the number
of stages, the blade counts, and the variations in flow condi-
tions that can be considered.

In some situations, the information yielded is well worth the
time and effort spent in getting the solution. As progress on
faster computers and better solution algorithms continues, the
Navier-Stokes methods will become usable design tools. Now,
they are used primarily to analyze designs that were arrived at
using simpler means.

The need for a fast calculation of the blade-to-blade flow-
field in multistage machines was the motivation for the work
reported here. A question arose about a possible incidence
problem in the Low Speed Axial Compressor (LSAC) facility
being built at NASA Lewis Research Center. The compressor
is four and one half stages. The blade row in question was the
rotor row of the second stage.

The LSAC compressor is based on a similar facility at
General Electric (Wisler, 1980). A throughflow design calcula-
tion existed for the compressor, but blade-to-blade analysis of
the flowfield was not available. A simple potential flow solu-
tion was considered sufficient to answer the incidence question.

It was decided to calculate the blade-to-blade flowfield
using the method of McFarland (1984). This method is a fast,
robust blade-to-blade solution based on integral equation meth-
ods. Cascade flows have been analyzed with this method for
many years.

The LSAC flowfield was calculated. The design has an
inlet guide vane (IGV) followed by four identical stages. The
solution method was applied to each blade row in turn, until the
row of interest was reached. The calculated exit flow from one
blade row became the upstream boundary condition of the next
blade row in the flowpath. This is a common method of mak-
ing an analysis of a multistage blade-to-blade flow.

This method of multistage flow analysis is flawed. The
influence that one blade row has on the adjacent blade rows is
neglected. Errors in the flowfield are introduced by considering
each blade row as a separate flowfield. These errors are ac-
ceptable in a design calculation. Still, a solution that included
all the blade rows in blade-to-blade flowfield would be better
for finding the flow incidence.

During the calculation of the LSAC flow, I found that the
integral equation method could be modified to calculate multi-
stage flows in a single calculation. The modification was a
simple change to the formulation of the method. The resulting
method provides a fast means of calculating a multistage blade-
to-blade flow.

At first, I thought that this formulation was new. In doing
research for this paper, I later learned that it is not. Many of
the basic ideas in the formulation had been previously described
by Parker (1967). In this paper, I reformulate Parker's work,
and incorporate it into an integral equation method. I also
extend the method to subsonic compressible flows and radial
flow machinery.

ANALYSIS

Governing Equations
The flow is assumed to be steady, inviscid, irrotational, and

compressible. The governing equations for this flow are given
in Eqs. (1) and (2). These equations are written for flow on a
blade-to-blade surface of revolution. Equation (1) is the conti-
nuity equation, and Eq. (2) is the irrotationality condition. The
equations are written with respect to an absolute frame of
reference.

a^ 
(pbV^) +a

au (rpbV .. = 0	 (1)

	

(V,..)	 ) (rV^) = 0	 (2)

In Eqs. (1) and (2), V rr is the meridional velocity component,
V^ is the tangential velocity component, p is the fluid density,
b is the stream sheet thickness, and r is the local radius of the
axisymmetric blade-to-blade surface. The meridional direction
is measured in the axial-radial plane along the surface of revo-
lution. The tangential direction is measured in the circumfer-
ential direction. These equations should be recognizable as the
equations of flow on the S t surface of Wu (1952).

McFarland (1984) showed that these equations can be
transformed from flow on a surface of revolution to flow on a
planer surface by using Eq. (3).

y = ^

= r ^, dm
X J	 r	 (3)

V, = rpbV^n

VV = rpbV

The transformation variables are written in terms of dimension-
less coordinates. These coordinates appear similar to cartesian
coordinates. They are denoted as x and y. Using these trans-
formations, the governing equations become Eqs. (4) and (5).

a Vy 	
1 a(V) =o 	 (4)

ay r	 r ax

(5)a Vi. 	 1 a Vy = 0
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Equations (4) and (5) can be simplified by noting that r and b
are functions of x. They can be further simplified by assuming
that p is also a function of x only. This gives Eqs. (6) and (7).

aY V
Y + dx V;_ = 0	 (6)

Vi - — VV _
a	 a	 _ Y a (P1i)	 (7)

oly 	 ax •	 p  ax

Equation (7) is linearized by replacing the term on the right
hand side of the equation by an estimated value. The estimated
value can be calculated from results of a throughflow calcula-
tion or by making a one-dimensional flow calculation. The
estimated term must be known before the solution of the flow
equations is begun. The final form of Eq. (7) is given in
Eq. (8).

V
a Vr _ a VY =	 Yrsr d 

(Pb)est	
(g)

ay	 ax	 (pb)eS7 dr

Equations Solution
Equations (6) and (8) are linear. They can be solved by

superposition of solutions. The solution is composed of a
uniform flow plus a disturbance flow as shown in Eq. (9).

Vx = Vz. + vX

(9)

V  - VYc + V 

Substituting Eq. (9) into the governing equations gives Eq. (10).
The last equation in Eq. (10) is the estimated nonlinear term. It
is a function x only.

referred to as panel methods. In these methods, the flow equa-
tions are solved using distributed singularities such as source
and vortex singularities. These singularities are located on the
surface of the bodies.

The integral equation solution used in this study was devel-
oped by McFarland (1982) (1984). This solution was modified
to calculate flows through multistage turbomachionery. In the
original method, a frame of reference relative to the rotating
bodies was used. The governing equations were written for rel-
ative flows. In the relative flow equations, the rotational speed
of the bodies appeared as a additional term. The new method
uses an absolute frame of reference. As can be seen in the
above equations, the rotational speed of the bodies no longer
explicitly appears in the governing equations. The rotation of
blade rows is included in the solution through the surface
boundary conditions.

Boundary Conditions
Three boundary conditions are used in determining a flow-

field. The flow relative to a body is required to remain tangent
to a body's surface. The flow is uniform upstream and down-
stream of the bodies. The circulation for each body is set by
imposing a Kutta condition.

At any point on a body, the relative velocity is tangent to
the body surface. This condition implies that the relative
velocity normal to a surface is zero. It is expressed in Eq. (11).
The relative velocity normal component, W n, is known as a
function of position on the body surface.

W - 1-1 = W" (S) = 0	 (11)

For the solution of this paper, the surface boundary condi-
tion needs to be given in terms of the absolute velocity, V.
The absolute velocity is related to the relative velocity by the
wheel speed, U. This relationship is given in Eq. (12).

7=W+-U

Vxe = V., cos ((X,)	
U = r 2pbfl

VYC = Vrnuet Sin 	 + Vpb
	

Vt = W, + U gin (6)
	 (12)

av
x + _vY=O

(10)

a v -	 v = 0
c7x Y

V = (pb)^, VY	
d(Pb),,Pb J

Pb est

These linear equations are amenable to solution by integral
equations techniques. Integral equation solutions are often

V„ = W" + U cos (6)

In these equations, S2 is the rotational speed of a body, and 0 is
the angle of the surface with respect to meridional axis. For
stationary bodies, a is zero. Equation (13) expresses the
surface boundary condition for the absolute velocity.

Vn(s) = U(s) cos [f)(s)] 	 (13)

The final form of the surface boundary condition is given by
Eq. (14). This equation is written in the form use in the
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integral equation solution of McFarland (1982). The terms
without summations are the uniform flow part of the solution.
The summation terms are the disturbance flow part of the solu-
tion. In the summations, Bs, Bv, and Bd parameters are the
influence coefficients used in the integral equations. The a, y,
and S variables are the source, vortex, and vortex jump singu-
larity distrbutions calculated in the integral equation solution.

0 = - Vo,,,eC sin (6p - oc ,) + (Vpb 
P - 

Ud cos (6d

rcpt-1	 rcpt	 nr

E Bspiai + 1: Bvpjyj + E Bdpksk
i=1	 rl	 k-1

(14)

As can be seen in Eq. (14), the surface boundary condition is
included as part of the uniform flow solution. Each body in the
problem can have a rotational velocity assigned to it. This
makes the calculation of flows for machines that have blade
rows rotating at different speeds or in opposite directions easy
to accommodate.

The uniform flow conditions for the upstream and down-
stream boundaries are combined with the Kutta condition to set
the overall circulation of the flowfield. These conditions are
similar to those used by McFarland (1984). For the present
solution, the upstream and downstream boundary conditions and
circulation calculation are reformulated in terms of the absolute
velocity.

Kutta Condition
A Kutta condition is used to set the circulation for each

body. The use of a Kutta condition is a key feature of this

solution. Its formulation significantly effects the flowfield
solution.

The Kutta condition of McFarland (1982) is used. The de-
scription of this Kutta condition is repeated here. Two points
are located just downstream of the trailing edge of each body.
The points lie an equal distance from the trailing edge bisector
as shown in Fig. 1. A coordinate system is assigned to each
point. This coordinate system is usually aligned with the
direction of the trailing edge bisector of the body. A different
alignment direction can be specified. This gives a means for
modeling deviation and slip flows. The relative velocities nor-
mal to the assigned direction at each point are required to be of
equal magnitudes but of opposite signs. This forces the relative
flow to leave the body's trailing edge smoothly. The Kutta
condition in this solution was reformulated using absolute
velocity and wheel speed.

Solution
The solution equations are similar to those given by

McFarland (1982). The source strength is assigned a value
equal to the normal component of the uniform flow along a
body's surface. A normal velocity boundary condition
(Eq. (14)) is written for each panel that is used to model the
body shape. A tangential error minimization equation is written
for each surface discontinuity on a body. The Kutta condition
is applied to the trailing edge flow of each body. This system
of equations is solved by using tipper and lower triangular
matrix decomposition.

Solution of the above system of equations gives a flowfield
that satisfies the surface boundary conditions and the Kutta con-
dition. To simultaneously satisfy the upstream and downstream
boundary conditions, an iterative process is used. The iteration
variable is ac , the flow angle of the uniform flow. This angle
is adjusted until the calculated upstream flow angle matches the
specified upstream flow angle.

Flow Estimate
The final piece of the solution is the calculation of the flow

estimate. The flow estimate is used to replace the nonlinear
term in Eq. (7). This term is zero for incompressible flows
with constant stream sheet thickness. For compressible flows,
it has a significant effect on solution results. The quality of the
flow parameters used in calculating the term has a direct impact
on the solution. A poor estimate will result in a poor com-
pressible flow solution.

The flow estimate is also used to include energy effects into
the solution. Energy effects are not usually considered in
single blade row calculations. For these calculations, the blade
row is either rotating or stationary. The energy equation can be
replaced by specifying constant rothalpy or enthalpy.

Since both rotating and stationary blades are present in this
solution, the total energy of the system is not constant. The
energy will increase as a rotor compresses the flow. Work is
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FIGURE 2. CALCULATION GEOMETRY

done on the system, and the absolute total temperature of the
flow increases. If the flow is expanded through the rotor, the
reverse occurs. The absolute total temperature of the flow
decreases.

A flow estimate can be provided in two ways. In the first
way, the results from a throughflow calculation can be used
directly as the estimate. The second way is to make a one-
dimensional calculation of the blade-to-blade flow. The esti-
mated values are calculated from the one-dimensional results.

The one-dimensional flow calculation was used in this
paper. The flowpath was divided into segments of rotating and
stationary blade rows. Each flowpath segment was subdivided
into a number of steps. The given flowpath and blade geome-
tries were used to calculate the flow area along the flowpath.
The relative flow was assumed to follow the average turning of
the blade shapes inside the blade rows. Outside the blade rows,
interpolation was used to get the flow conditions. At each
flowpath step, the one-dimensional flow equation, constant
rothalpy condition, calculated flow area, and assumed flow
turning were used to calculate the density and relative velocity.
The calculated relative velocity was combined with the geome-
try information to give the absolute velocity and wheel speed.
These velocities are used in a simple energy equation to give
the absolute total temperature variation along the flowpath.
Finally, the results are numerically integrated along the flow-
path to give the estimated nonlinear term, Vpb.

RESULTS AND DISCUSSION
The method was verified by comparing solution results with

experimental data from United Technology Research Center's
(UTRC) Large Scale Rotating Rig facility. Experimental
results from this research facility have been presented in numer-
ous papers. Five of these papers were used in making the
comparisons presented here. These papers are Dring, Joslyn,

and Blair (1987); Dring et al. (1986); Joslyn, Dring, and
Sharma (1983); and Dring et al. (1982) (1981).

The UTRC large scale turbine test geometry was analyzed.
The experiment is described i,i detail by Dring (1986). The test
configuration was a one and one half stage axial turbine. Blade
counts for first stator row, rotor row, and second stator row
were 22, 28, and 28 respectively. The mean radius of the stage
was 0.686 m. (27 in.). Hub and shroud walls were cylindrical.
The axial spacing between the blade rows was variable. The
turbine vane and blade shapes were typical of 1980 designs.
The inlet velocity was 23 m/s (75 f/s). The rotational speed
was 410 rpm. This rotational speed gave an axial velocity to
mean wheel speed ratio of 0.78. This was the design ratio for
the turbine.

The UTRC turbine experiment provides a simple test case.
The main feature of the flowfield is the interaction of the blade
rows. The experiment had low Mach number flows. Compres-
sible flow effects were small. The flowpath geometry was axial
and large scale. Radius and stream sheet thickness changes were
negligible. The midspan flow was nearly two-dimensional.

The experiment's simple flowfield made it a good choice
for use in verifying the method presented here. The method's
new capability to calculate interacting blade row flows could be
explored independently from other factors that effect the flow.

Steady Flow Results
The first test case analyzed had the rotor row located mid-

way between the two stator rows. This case was selected since
the unsteady and viscous wake effects of the flow are mini-
mized. The large spacing between the two stator rows and the
rotor row allows the flow to circumferentially mix between
rows. The configuration is designated as the 50 percent case
by Dring (1987).

The midspan blade-to-blade geometry used to model the
experiment is shown in Fig. 2. The calculation uses periodic
circumferential sectors. The arc of a sector is 21r divided by
the number of sectors. The number of sectors is chosen to
match a row's blade count. The number of sectors times the
number of blades contained in the sector for each row should
equal the blade count for that row. If all blade rows have the
same blade count, the sector pitch will be equal to the blade
row pitch. This is rarely the case in turbomachinery design
because of aeroelastic problems that result from equal blade
counts. A sector of blades is usually selected for the calcula-
tion that contains an integer ratio of blades in the rows. The
worst case is for one row's blade count to be a prime number.
In this case the sector pitch will be 27r, and it will contain all
the blades in the rows.

The calculation's blade count did not match the experi-
mental configuration. The blade count was altered to reduce
the computational resources required to make the calculation.
The case was modeled as seven periodic sectors of three stator
vanes followed by four rotor blades followed by four stator
vanes. This causes the first stator row's blade count to be 21
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instead of 22. It's pitch is about 5 percent greater than the
experiment. No scaling of the stator geometry was made to
compensate for the increased pitch.

Results of the calculation are shown in Figs. 3 to 5. The
figures show pressure coefficient as a function of the normal-
ized axial chord. The pressure coefficient (Eq. 15) has the
same form as used by Dring (1987).

Pr (inlet) - P
CP -

2	
(15)

The calculated surface pressures are compared with the
experiment. The calculated pressures are the average of the

pressures for each blade in a row of the sector. The calculated
pressures varied very little between blades in a row. The
experimental values are the time average pressures measured on
a single blade in a row.

Overall, the comparison is good. The comparison is very
good for the first stator row. However as the surface pressures
are calculated further along the flowpath, the comparison be-
comes poorer. The tangential loading appears correct for all
three rows, but the absolute level is off for the rotor and second
stator.

The reason for the increasing error along the flowpath is a
loss in total pressure. The calculation assumes that the total
pressure varies only with total temperature. As seen in Fig. 6,
the calculation models the total temperature drop through the
rotor accurately. The temperature change is related to the
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turning of the flow by the rotor. Figure 4 showed that the
calculated and measured rotor loading were very close. Where
the calculation falls down is in the total pressure calculation.
The loss in total pressure due to viscous flow and mixing has
not been included. This can be seen in Fig. 6 as the increasing
difference in calculated and measured total pressure.

For the solution to be viable, a loss model needs to be
added. Techniques are available to correct inviscid solutions
for total pressure loss. A user specified adiabatic efficiency for
each blade row will be added to this method. The calculated
total temperature change is assumed to be correct. The speci-
fied efficiency will be used to correct the total pressure for
losses. Including this loss model into the method, should be
straightforward.

Dynamic Loading Results
The method has features that make it appear like an un-

steady solution. Both rotating and stationary blade rows are
present. Blade loading can vary from blade to blade in a row.
It is tempting to try to infer unsteady flow information from the
solution_ However the solution is steady state. Time deriva-
tives are not included in the governing equations. The most
that could be determined from the solution is the amplitude of
the pressure variations along a blades surface.

The closely coupled case from the UTRC turbine experi-
ment was analyzed to explore the ability of the method to
predict periodic loading variations. Dring (1987,1982,1981)
referred to this configuration as the 15 percent case. The test
consisted of a single turbine stage. The rotor row was placed
15 percent of the axial chord downstream of the stator row.
The inlet flow and rotational speed were the same as were used
in the steady state results. The calculation used two periodic
sectors of 11 vanes and 14 blades. This matches the blade

count of the experiment exactly. The blade-to-blade surface
was taken at midspan.

Calculated variations in the stator and rotor surface pressure
with rotor position are shown in Figs. 7 and 8. The pressure
distribution are for an individual vane and blade. The five
distributions shown on the figures are from five separate calcu-
lations. The variation in the distribution is the result of moving
the rotor blades one fifth the rotor row's pitch in the tangential
direction for each calculation. The series of solutions repre-
sents the periodic pressure variations the blades should experi-
ence in the experiment.

The general shape of the loading variations matches Dring's
description (1982). The large variations in pressure at the vane
trailing edge and rotor leading edge are present in the solution.
The narrowing of the variations at the vane throat on the suc-
tion, and smaller pressure fluctuations on the pressure surface
are also predicted.

The solution does not model the pressure changes inside the
rotor passage that are due to the vane wakes. As these wakes
move downstream, they are distorted by the rotor flow. This
produces the pressure fluctuations measured in the experiment.
The calculation does not account for these wakes, so these
fluctuations are not present in the solution.

Further comparisons with Dring's experimental data (1981),
shows that the calculation does not model the amplitude of the
unsteady pressure variation very well. Figures 9 and 10 show
the comparisons. In these figures the blade leading edge is
located at zero on the axial chord axis. The negative axial
chord axis is the pressure surface of the blade. The positive
axial chord axis is the suction surface. The differential pressure
coefficient is calculated as the difference between the maximum
and minimum pressure that the blade surface experiences during
the periodic passing of the rotor.

7
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The calculation does match the data at a few points, but in
general it poorly predicts the magnitude of the unsteady pres-
sure. Over most of the vane surface and the rotor leading edge
the pressure difference is over predicted. Inside the rotor
passage, the pressure is under predicted. Figure 10 clearly
shows the pressure fluctuations inside the rotor passage are not
modeled by the solution.

From these results, it is apparent that one of the effects of
the unsteady flow terms on the potential interaction of rotor/
stator flows is to attenuate the magnitude of pressure variations.
This is consistent with the findings of Kemp and Sears (1953).

The solution of Rai and Madavan (1990) is included on
Figs. 9 and 10 for comparison. This is an unsteady Navier-
Stokes analysis of Dring's experiment. This calculation has a

more complex model of the flow physics. As expected, it gives
a better prediction of the unsteady flow pressures.

The last comparisons with the 15 percent case are shown in
Figs. 1 I and 12. The calculated results in the figures show the
arithmetic average of the pressure distributions shown in Figs. 7
and 8. The experimental data is the time averaged surface
pressures. The comparison is good.

The calculation could be made to agree better with the
experiment. The arithmetic average of the calculation results
could be time weighted to more accurately model the time
averaging of the experiment. Smaller steps could be used in
moving the rotor. The resulting arithmetic average would more
closely approximate a time average. Instead of averaging the
surface pressure from a single vane and blade, all 11 vanes and

8
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14 blades pressure distributions in the solution could be used.
The larger sample of pressure distributions would give a better
prediction of the time average pressure.

Example Solution
To demonstrate the solution method, results from the analy-

sis of the LSAC design will be given. The analysis is for a
blade-to-blade surface near the compressor's hub. The LSAC
consists of a set of IGVs followed by four identical stages. It
was modeled as 13 periodic sectors of 4 IGVs followed by 4
stages of 3 rotors and 4 stators each. This matches the blade
count of the LSAC. The inlet flow velocity was 19.6 m/s
(64.2 ft/s), the rotational speed was 960 rpm, and the radius
was 0.488 m (1.6 ft). These conditions are consistent with
design flow along the hub of the LSAC.

Results from the calculation are shown in Fig. 13. Only the
pressure loadings for the four stages are shown. The first
pressure distribution is for the first rotor. It is followed by the
loading for the first stator. The loading distributions continue
with a rotor followed by stator for the next three stages.

No experimental data was available for comparison. The
loading is similar for all rotors and all stators. The static
pressure rise is linear with axial distance. Both these results
are expected since the stages are identical.

Computational Times
In design, it is desirable for a solution method to run quickly.

With a faster method, a designer can look at more cases. This
expands the design space that a designer can explore in a given
amount of time.

The multistage integral method is very fast compared to
other multistage methods. The use of linear flow equations for

the solutions contributes the most to the method's speed. The
use of an integral equation solution also makes the method
faster, because the dimensionality of the problem is reduced by
one. The integral equations are written for line integrals around
the bodies. A flowfield grid is not required. This reduces the
size of the computation, and allows the user to skip the usual
step of generating a flowfield grid.

The flow cases presented were run on the Cray YMP at
NASA Lewis Research Center. The 50 percent turbine case
had seven bodies with 50 panels each. The CPU time was
223 sec. The 15 percent turbine case had 25 bodies with 50
panels each. Its CPU time was 327 sec/step. The four and one
half stage LSAC case had 32 bodies with 60 panels each. This
case required 913 sec to run.

Although all the cases presented were run on a Cray YMP,
smaller problems have been nun on less powerful computer
systems. A single stator followed by a rotor followed by a.
stator model of the UTRC turbine experiment was run on a
personal computer with a 20 Mz clock speed. The solution
convereged in 266 sec. The same case running on the YMP
computer required less than 10 sec.

CONCLUSION
A method has been developed for analyzing multistage

turbomachinery flows. The method solves a linear set of equa-
tions. It provides a rapid means of calculating blade-to-blade
flows in multistage machines. It should be a useful design tool.

The method was shown to predict low speed axial turbine
flows well. The comparison of solution results with time
averaged experimental data was good. As one would expect,
the lack of a loss model was found to be a shortcoming of the
method.

An attempt was made to predict the periodic variations in
surface pressures experienced in closely coupled multistage
machines. The results of the attempt showed that the method
only crudely modeled these flows. The lack of unsteady and
vicous flow terms in the governing equations cause the method to
inaccurately calculate the variations in unsteady blade loading.

Preliminary results from the method have been presented.
These results are encouraging. Further study and development
of the method are warranted. The ability of the method to
predict higher Mach number flows and multistage radial turbo-
machinery should be explored. A total pressure loss model
needs to be incorporated in the calculation. More cases need to
be analyzed with the method to verify its capabilities, and
better define its usefulness in turbomachinery design.
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